skip to main content


Search for: All records

Creators/Authors contains: "Zaslavsky, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Data-driven reduced order models (ROMs) recently emerged as powerful tool for the solution of inverse scattering problems. The main drawback of this approach is that it was limited to measurement arrays with reciprocally collocated transmitters and receivers, that is, square symmetric matrix (data) transfer functions. To relax this limitation, we use our previous work Druskin et al (2021 Inverse Problems 37 075003), where the ROMs were combined with the Lippmann–Schwinger integral equation to produce a direct nonlinear inversion method. In this work we extend this approach to more general transfer functions, including those that are non-symmetric, e.g., obtained by adding only receivers or sources. The ROM is constructed based on the symmetric subset of the data and is used to construct all internal solutions. Remaining receivers are then used directly in the Lippmann–Schwinger equation. We demonstrate the new approach on a number of 1D and 2D examples with non-reciprocal arrays, including a single input/multiple outputs inverse problem, where the data is given by just a single-row matrix transfer function. This allows us to approach the flexibility of the Born approximation in terms of acceptable measurement arrays; at the same time significantly improving the quality of the inversion compared to the latter for strongly nonlinear scattering effects. 
    more » « less